Identifying and Profiling Key Sellers in Cyber Carding Community: AZSecure Text Mining System
نویسندگان
چکیده
The past few years have witnessed millions of credit/debit cards flowing through the underground economy and ultimately causing significant financial loss. Examining key underground economy sellers has both practical and academic significance for cybercrime forensics and criminology research. Drawing on social media analytics, we have developed the AZSecure text mining system for identifying and profiling key sellers. The system identifies sellers using sentiment analysis of customer reviews and profiles sellers using topic modeling of advertisements. We evaluated the AZSecure system on eight international underground economy forums. The system significantly outperformed all benchmark machine-learning methods on identifying advertisement threads, classifying customer review sentiments, and profiling seller characteristics, with an average F-measure of about 80 percent to 90 percent. In our case study, we identified the famous carder, Rescator, who was affiliated with the Target breach, and captured important seller characteristics in terms of product type, payment options, and contact channels. Our research leverages social media analytics to probe into the underground economy in order to help law enforcement target key sellers and prevent future fraud. It also contributes to our understanding of the use of information technology in detecting deception in online systems.
منابع مشابه
Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملAutomated Identification of Web Communities for Business Intelligence Analysis
Analysts often search the Web for business intelligence using traditional search engines which provide keyword-based search. Recently, it has been suggested that the incoming links, or backlinks, of a company’s Web site can provide useful information about the company’s “Web communities”. Backlinks refer to other Web pages which have a hyperlink pointing to the company of interest and these pag...
متن کاملA review of text mining approaches and their function in discovering and extracting a topic
Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling. Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...
متن کاملIdentifying High Quality Carding Services in Underground Economy using Nonparametric Supervised Topic Model
Over the years, cybercriminals increasingly joined the underground economy to exchange malicious services for conducting data breaches crimes. As many service providers are rippers, most cybercriminals rely on a few high quality services. To this end, cybercriminals post customer reviews evaluating the purchase experience and the service quality. To identify high quality services, researchers f...
متن کاملData Mining Challenges for Electronic Safety: The Case of Fraudulent Intent Detection in E-Mails
Online criminals have adapted traditional snail mail and door-to-door fraudulent schemes into electronic form. Increasingly, such schemes target an individual’s personal email, where they mingle among, and are masked by, honest communications. The targeting and conniving nature of these schemes are an infringement upon an individual’s personal privacy, as well as a threat to personal safety. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. of Management Information Systems
دوره 33 شماره
صفحات -
تاریخ انتشار 2016